\(\int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))} \, dx\) [593]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 297 \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))} \, dx=\frac {(b (A-B)-a (A+B)) \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {(b (A-B)-a (A+B)) \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {2 a^{3/2} (A b-a B) \arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{b^{3/2} \left (a^2+b^2\right ) d}+\frac {2 B}{b d \sqrt {\cot (c+d x)}}+\frac {(a (A-B)+b (A+B)) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a (A-B)+b (A+B)) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d} \]

[Out]

-2*a^(3/2)*(A*b-B*a)*arctan(a^(1/2)*cot(d*x+c)^(1/2)/b^(1/2))/b^(3/2)/(a^2+b^2)/d-1/2*(b*(A-B)-a*(A+B))*arctan
(-1+2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)-1/2*(b*(A-B)-a*(A+B))*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))/(a^
2+b^2)/d*2^(1/2)+1/4*(a*(A-B)+b*(A+B))*ln(1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)-1/4*(a*(A
-B)+b*(A+B))*ln(1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)+2*B/b/d/cot(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.83 (sec) , antiderivative size = 297, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.394, Rules used = {3662, 3690, 3734, 3615, 1182, 1176, 631, 210, 1179, 642, 3715, 65, 211} \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))} \, dx=\frac {(b (A-B)-a (A+B)) \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d \left (a^2+b^2\right )}-\frac {(b (A-B)-a (A+B)) \arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2} d \left (a^2+b^2\right )}+\frac {(a (A-B)+b (A+B)) \log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}-\frac {(a (A-B)+b (A+B)) \log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}-\frac {2 a^{3/2} (A b-a B) \arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d \left (a^2+b^2\right )}+\frac {2 B}{b d \sqrt {\cot (c+d x)}} \]

[In]

Int[(A + B*Tan[c + d*x])/(Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])),x]

[Out]

((b*(A - B) - a*(A + B))*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) - ((b*(A - B) - a*(A
+ B))*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) - (2*a^(3/2)*(A*b - a*B)*ArcTan[(Sqrt[a]
*Sqrt[Cot[c + d*x]])/Sqrt[b]])/(b^(3/2)*(a^2 + b^2)*d) + (2*B)/(b*d*Sqrt[Cot[c + d*x]]) + ((a*(A - B) + b*(A +
 B))*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) - ((a*(A - B) + b*(A + B))*
Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1182

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(-a)*c]

Rule 3615

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3662

Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d
 + c*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ
[n]

Rule 3690

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n
 + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e +
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*B*(b*c*(m + 1) + a*d*(n + 1)) + A*(a*(b*c - a*d)*(m + 1) - b^2*d*(
m + n + 2)) - (A*b - a*B)*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n + 2)*Tan[e + f*x]^2, x], x
], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
&& LtQ[m, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ
[a, 0])))

Rule 3715

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 3734

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[(c + d*Tan[e + f*x])^n*((1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rubi steps \begin{align*} \text {integral}& = \int \frac {B+A \cot (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (b+a \cot (c+d x))} \, dx \\ & = \frac {2 B}{b d \sqrt {\cot (c+d x)}}+\frac {2 \int \frac {\frac {1}{2} (A b-a B)-\frac {1}{2} b B \cot (c+d x)-\frac {1}{2} a B \cot ^2(c+d x)}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))} \, dx}{b} \\ & = \frac {2 B}{b d \sqrt {\cot (c+d x)}}+\frac {2 \int \frac {\frac {1}{2} b (A b-a B)-\frac {1}{2} b (a A+b B) \cot (c+d x)}{\sqrt {\cot (c+d x)}} \, dx}{b \left (a^2+b^2\right )}+\frac {\left (a^2 (A b-a B)\right ) \int \frac {1+\cot ^2(c+d x)}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))} \, dx}{b \left (a^2+b^2\right )} \\ & = \frac {2 B}{b d \sqrt {\cot (c+d x)}}+\frac {4 \text {Subst}\left (\int \frac {-\frac {1}{2} b (A b-a B)+\frac {1}{2} b (a A+b B) x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{b \left (a^2+b^2\right ) d}+\frac {\left (a^2 (A b-a B)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-x} (b-a x)} \, dx,x,-\cot (c+d x)\right )}{b \left (a^2+b^2\right ) d} \\ & = \frac {2 B}{b d \sqrt {\cot (c+d x)}}-\frac {\left (2 a^2 (A b-a B)\right ) \text {Subst}\left (\int \frac {1}{b+a x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{b \left (a^2+b^2\right ) d}-\frac {(b (A-B)-a (A+B)) \text {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}-\frac {(a (A-B)+b (A+B)) \text {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{\left (a^2+b^2\right ) d} \\ & = -\frac {2 a^{3/2} (A b-a B) \arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{b^{3/2} \left (a^2+b^2\right ) d}+\frac {2 B}{b d \sqrt {\cot (c+d x)}}-\frac {(b (A-B)-a (A+B)) \text {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}-\frac {(b (A-B)-a (A+B)) \text {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}+\frac {(a (A-B)+b (A+B)) \text {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {(a (A-B)+b (A+B)) \text {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d} \\ & = -\frac {2 a^{3/2} (A b-a B) \arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{b^{3/2} \left (a^2+b^2\right ) d}+\frac {2 B}{b d \sqrt {\cot (c+d x)}}+\frac {(a (A-B)+b (A+B)) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a (A-B)+b (A+B)) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {(b (A-B)-a (A+B)) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}+\frac {(b (A-B)-a (A+B)) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d} \\ & = \frac {(b (A-B)-a (A+B)) \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {(b (A-B)-a (A+B)) \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {2 a^{3/2} (A b-a B) \arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{b^{3/2} \left (a^2+b^2\right ) d}+\frac {2 B}{b d \sqrt {\cot (c+d x)}}+\frac {(a (A-B)+b (A+B)) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a (A-B)+b (A+B)) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.60 (sec) , antiderivative size = 251, normalized size of antiderivative = 0.85 \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))} \, dx=-\frac {\sqrt {\cot (c+d x)} \left (2 \sqrt {2} b^{3/2} (b (A-B)-a (A+B)) \left (\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-\arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )\right )+8 a^{3/2} (-A b+a B) \arctan \left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )-\sqrt {2} b^{3/2} (a (A-B)+b (A+B)) \left (\log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )-\log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )\right )-8 \sqrt {b} \left (a^2+b^2\right ) B \sqrt {\tan (c+d x)}\right ) \sqrt {\tan (c+d x)}}{4 b^{3/2} \left (a^2+b^2\right ) d} \]

[In]

Integrate[(A + B*Tan[c + d*x])/(Cot[c + d*x]^(3/2)*(a + b*Tan[c + d*x])),x]

[Out]

-1/4*(Sqrt[Cot[c + d*x]]*(2*Sqrt[2]*b^(3/2)*(b*(A - B) - a*(A + B))*(ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] -
ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]]) + 8*a^(3/2)*(-(A*b) + a*B)*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]
] - Sqrt[2]*b^(3/2)*(a*(A - B) + b*(A + B))*(Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] - Log[1 + Sqrt
[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]) - 8*Sqrt[b]*(a^2 + b^2)*B*Sqrt[Tan[c + d*x]])*Sqrt[Tan[c + d*x]])/(b^(
3/2)*(a^2 + b^2)*d)

Maple [A] (verified)

Time = 0.37 (sec) , antiderivative size = 265, normalized size of antiderivative = 0.89

method result size
derivativedivides \(\frac {\frac {2 B}{b \sqrt {\cot \left (d x +c \right )}}-\frac {2 \left (\frac {\left (A b -B a \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{8}+\frac {\left (-A a -B b \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{8}\right )}{a^{2}+b^{2}}-\frac {2 \left (A b -B a \right ) a^{2} \arctan \left (\frac {a \sqrt {\cot \left (d x +c \right )}}{\sqrt {a b}}\right )}{b \left (a^{2}+b^{2}\right ) \sqrt {a b}}}{d}\) \(265\)
default \(\frac {\frac {2 B}{b \sqrt {\cot \left (d x +c \right )}}-\frac {2 \left (\frac {\left (A b -B a \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{8}+\frac {\left (-A a -B b \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )-\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}{1+\cot \left (d x +c \right )+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\cot \left (d x +c \right )}\right )\right )}{8}\right )}{a^{2}+b^{2}}-\frac {2 \left (A b -B a \right ) a^{2} \arctan \left (\frac {a \sqrt {\cot \left (d x +c \right )}}{\sqrt {a b}}\right )}{b \left (a^{2}+b^{2}\right ) \sqrt {a b}}}{d}\) \(265\)

[In]

int((A+B*tan(d*x+c))/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(2*B/b/cot(d*x+c)^(1/2)-2/(a^2+b^2)*(1/8*(A*b-B*a)*2^(1/2)*(ln((1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))/(1+
cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2)))+2*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2
)))+1/8*(-A*a-B*b)*2^(1/2)*(ln((1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/(1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))
)+2*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))))-2/b*(A*b-B*a)*a^2/(a^2+b^2)/(a*
b)^(1/2)*arctan(a*cot(d*x+c)^(1/2)/(a*b)^(1/2)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3033 vs. \(2 (257) = 514\).

Time = 8.78 (sec) , antiderivative size = 6092, normalized size of antiderivative = 20.51 \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))} \, dx=\text {Too large to display} \]

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c)),x, algorithm="fricas")

[Out]

Too large to include

Sympy [F]

\[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))} \, dx=\int \frac {A + B \tan {\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right ) \cot ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)**(3/2)/(a+b*tan(d*x+c)),x)

[Out]

Integral((A + B*tan(c + d*x))/((a + b*tan(c + d*x))*cot(c + d*x)**(3/2)), x)

Maxima [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 238, normalized size of antiderivative = 0.80 \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))} \, dx=\frac {\frac {8 \, {\left (B a^{3} - A a^{2} b\right )} \arctan \left (\frac {a}{\sqrt {a b} \sqrt {\tan \left (d x + c\right )}}\right )}{{\left (a^{2} b + b^{3}\right )} \sqrt {a b}} + \frac {8 \, B \sqrt {\tan \left (d x + c\right )}}{b} + \frac {2 \, \sqrt {2} {\left ({\left (A + B\right )} a - {\left (A - B\right )} b\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left ({\left (A + B\right )} a - {\left (A - B\right )} b\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) - \sqrt {2} {\left ({\left (A - B\right )} a + {\left (A + B\right )} b\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) + \sqrt {2} {\left ({\left (A - B\right )} a + {\left (A + B\right )} b\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )}{a^{2} + b^{2}}}{4 \, d} \]

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c)),x, algorithm="maxima")

[Out]

1/4*(8*(B*a^3 - A*a^2*b)*arctan(a/(sqrt(a*b)*sqrt(tan(d*x + c))))/((a^2*b + b^3)*sqrt(a*b)) + 8*B*sqrt(tan(d*x
 + c))/b + (2*sqrt(2)*((A + B)*a - (A - B)*b)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqrt(2)
*((A + B)*a - (A - B)*b)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) - sqrt(2)*((A - B)*a + (A + B)*
b)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) + sqrt(2)*((A - B)*a + (A + B)*b)*log(-sqrt(2)/sqrt(ta
n(d*x + c)) + 1/tan(d*x + c) + 1))/(a^2 + b^2))/d

Giac [F]

\[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))} \, dx=\int { \frac {B \tan \left (d x + c\right ) + A}{{\left (b \tan \left (d x + c\right ) + a\right )} \cot \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(3/2)/(a+b*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)/((b*tan(d*x + c) + a)*cot(d*x + c)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))} \, dx=\int \frac {A+B\,\mathrm {tan}\left (c+d\,x\right )}{{\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )} \,d x \]

[In]

int((A + B*tan(c + d*x))/(cot(c + d*x)^(3/2)*(a + b*tan(c + d*x))),x)

[Out]

int((A + B*tan(c + d*x))/(cot(c + d*x)^(3/2)*(a + b*tan(c + d*x))), x)